🦋
Butterfly 用户手册
  • Introduction
  • 一 前言
  • 二 开始
    • 安装部署
    • 五分钟体验指南
    • 单机使用手册
    • 应用规范
      • handler specs
      • middleware specs
      • xingqiao_plugin specs
      • yiqiu_program specs
  • 三 客户端功能
    • MySQL 原生协议
    • MySQL ORM
    • Redis 原生协议
      • redis_config
      • redis_tls
    • Redis ORM
    • Redis mcpack
    • Localcache
    • Kazoo
  • 四 应用(通用服务)
    • API JSON 规范
    • 异步任务 BaiChuan(百川)
    • 任务调度 RuQi(如期)
    • 任务编排 XingQiao(星桥)
    • 配置管理 WuXing(五行)
    • 运筹决策 BaiCe(百策)
  • 五 部署运维
    • 单机容器化部署
    • 监控
    • 异常排查
      • CPU Load spike every 7 hours
    • 升级
    • 安全
    • 其他
  • 六 前端
    • butterfly_template
    • butterfly_fe
    • butterfly-admin(json2web)
      • amis
      • sso
      • pangu
    • NoahV
    • PyWebIO
  • 七 潘多拉魔盒
    • 装饰器
      • localcache_decorator
      • retry_decorator
      • custom_decorator
      • command2http_decorator
    • 算法
      • 算法-分位数
      • 算法-变异系数
    • 实用工具
      • host_util
      • shell_util
      • http_util
      • time_util
      • random_util
      • concurrent
      • jsonschema
      • blinker
      • toml
      • command_util
      • config_util
      • picobox
      • 对称加密
        • des
        • aes
      • ascii_art
        • ttable
        • chart
      • business_rules
      • python-mysql-replication
      • dict_util
    • 中间件
      • middleware_status
      • middleware_whitelist
    • test_handler.py
  • 八 最佳实践
    • 分布式架构
    • Code practice
    • Log practice
    • Daemon process
  • 附录
Powered by GitBook
On this page
  • 分位数
  • 1 使用 numpy
  • 2 使用 math
  1. 七 潘多拉魔盒
  2. 算法

算法-分位数

分位数

分位数(Quantile),亦称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数)、四分位数、百分位数等。

1 使用 numpy

code

import numpy as np
 
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# 中位数
print(np.median(a))
# 25%分位数
print(np.percentile(a, 25))
# 75%分位数
print(np.percentile(a, 75))

result

5.5
3.25
7.75

2 使用 math

math 包及其基本函数-ceil 可用于计算不同的百分比。

完整的示例代码如下。

import math

arry=[1,2,3,4,5,6,7,8,9,10]

def calculate_percentile(arry, percentile):
    size = len(arry)
    index = math.ceil((size * percentile) / 100)
    if index != 0:
        index = index - 1
        
    return sorted(arry)[int(index)]

percentile_25 = calculate_percentile(arry, 25)
percentile_50 = calculate_percentile(arry, 50)
percentile_75 = calculate_percentile(arry, 75)

# 2
print("The 25th percentile is:",percentile_25)
# 5
print("The 50th percentile is:",percentile_50)
# 7
print("The 75th percentile is:",percentile_75)
Previous算法Next算法-变异系数

Last updated 1 year ago